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Mitochondrial heterogeneity drives diverse cellular responses in neurodegenerative diseases, 
complicating the evaluation of mitochondrial dysfunction. In this study, we describe a high-throughput 
imaging and analysis approach to investigate cell-to-cell mitochondrial variability. We applied known 
mitochondrial function inhibitors - rotenone, antimycin, and oligomycin to inhibit complexes I, III, and 
V (ATP synthase) function in human induced pluripotent stem cell-derived cortical neurons, a model 
commonly used in neurodegenerative disease research. We captured a large number of cell images and 
extracted a diverse range of mitochondrial morphological features related to shape, size, texture, and 
spatial distribution, for an unbiased and comprehensive analysis of mitochondrial morphology. Group-
level cell analysis, which examines the collective responses of cells exposed to the same mitochondrial 
inhibitor, showed that cells treated with rotenone, antimycin, or oligomycin clustered together 
based on their shared morphological changes. Rotenone and antimycin, both targeting different 
complexes of the electron transport chain, formed sub-clusters within a larger cluster. In contrast, 
oligomycin, which inhibits ATP synthase, resulted in a distinct cluster likely due to its differing effect 
on ATP production. Single-cell analysis using dimensionality reduction techniques revealed distinct 
subpopulations of cells with varying degrees of sensitivity to each mitochondrial inhibitor, identifying 
the most affected cells. Mitochondrial feature differential expression analysis showed that neurite-
related mitochondrial features, such as intensity and size, were more severely impacted than cell body-
related mitochondrial features, particularly with rotenone and antimycin, which target the electron 
transport chain. In contrast, oligomycin which affects ATP synthesis by directly inhibiting ATP synthase 
showed relatively less severe alterations in neurite-related mitochondrial features, highlighting a 
distinct effect of the mode of action between inhibitors. By incorporating the most affected cells 
into machine learning models, we significantly improved the prediction accuracy of mitochondrial 
dysfunction outcomes − 81.97% for antimycin, 75.12% for rotenone, and 94.42% for oligomycin. 
This enhancement underscores the value of targeting highly responsive cell subpopulations, offering 
a more precise method for evaluating mitochondrial modulators and therapeutic interventions in 
neurodegenerative diseases.

In neurodegenerative diseases, mitochondrial dysfunction can result from genetic predispositions and/or 
environmental factors, such as toxins and pollutants, triggering a cascade of downstream events, eventuating 
in neuronal dysfunction or degeneration, thereby leading to clinical phenotypes1. Mitochondria in neurons 
are involved in a range of cellular functions essential for maintaining neuronal activity and survival, including 
adenosine triphosphate (ATP) synthesis, axonal transport, synaptic function and plasticity, reactive oxygen 
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species (ROS) management, calcium homeostasis, and the regulation of apoptosis2,3. To carry out these processes, 
mitochondria continuously undergo various structural modifications through processes such as - fusion and 
fission, cristae remodelling, motility, mitophagy, and their interaction with other organelles4–6, ensuring cellular 
homeostasis in response to physiological or environmental stimuli4,7. Mitochondrial morphology is strongly 
linked to its pathology and morphology-based assays evaluating mitochondrial size and interconnectivity 
using morphological features such as mitochondrial area, form factor, and aspect ratio are commonly used 
as indicators of mitochondrial health. For example, inhibition of complex I in human fibroblasts reduced 
mitochondrial membrane potential and reduced mitochondrial size and branching8. Inhibition of complexes 
I and III simultaneously increased mitochondrial fission leading to more fragmented smaller mitochondria for 
degradation by mitophagy9. Recent developments in the field of high-throughput imaging and analysis have 
enabled the extraction of large number of cell images and a broad range of morphological features related to the 
shape, size, texture and spatial distribution of cells and their components, such as mitochondria10. Combining 
multiple morphological features provides a comprehensive and unbiased method for grouping cells with 
similar pathologies, thereby detecting cell clusters with similar modes of action, and predicting specific cellular 
pathologies11. This method has significantly contributed to identifying novel insights into disease etiology, 
mechanisms of action, new therapeutics, and toxicology predictions over the past decade12–14 .

To determine whether morphology-based analysis can be used to distinguish the effects of different 
mitochondrial insults, we used known specific inhibitors - rotenone, antimycin, and oligomycin to inhibit 
complexes I, III, and ATP synthase using human induced pluripotent stem cell (iPS) - cortical neurons that are 
commonly studied in neurodegenerative disease research. We took a stepwise approach to analyse mitochondria 
at group-level and single-cell level. Group-level analysis involved analysing all cells treated with a mitochondrial 
function inhibitor. This analysis was performed using hierarchical clustering analysis that involves clustering 
cells according to their overall morphological similarities in response to mitochondrial inhibitors. This approach 
provided a broad understanding of how different treatments affected group of cells. Further, to capture cellular 
heterogeneity, we applied dimensionality reduction techniques such as Principal Components Analysis (PCA) 
and Uniform Manifold Approximation and Projection (UMAP) for detailed single-cell analysis. These techniques 
highlighted the subtle variations between single cells exposed to the same mitochondrial function inhibitor, 
identifying cells that exhibited strong responses to the inhibitors. By focusing on these highly responsive cells, 
we performed differential expression analysis of mitochondrial morphological features to identify specific 
morphological features that were significantly altered by each inhibitor treatment. We also applied machine-
learning based prediction to forecast mitochondrial dysfunction outcomes more accurately.

This comprehensive approach of using high-throughput imaging for the acquisition of a large number of cell 
images, extraction of a diverse range of morphological features related to the shape, size, texture, and spatial 
distribution of mitochondria, combined with in-depth unsupervised and supervised machine-learning analysis 
at both the group and single-cell levels, encompasses “mitochondrial morphomics”, which allows for an unbiased 
analysis of mitochondrial morphology leading to new insights into mitochondrial biology as described here.

Result section
Inhibition of mitochondrial complexes I, III and ATP synthase reduces mitochondrial 
respiration
To ensure that the mitochondrial complex inhibitors successfully inhibited mitochondrial respiration, we used 
the extracellular oxygen consumption assay. Human induced pluripotent stem cell (iPS) differentiated cortical 
neurons were treated with three inhibitors: rotenone, antimycin, and oligomycin, which target complexes I, III, 
and ATP synthase, respectively (Fig. 1A). Each inhibitor was tested at three concentrations (0.625 µM, 1.25 µM, 
and 2.5 µM). Measurements of extracellular oxygen consumption rate showed that all mitochondrial inhibitors 
significantly reduced mitochondrial respiration compared to healthy neurons (p < 0.0001; Fig. 1B).

Group-level cell hierarchical clustering analysis reveals distinct responses to mitochondrial 
complex inhibitions
To test whether our mitochondrial morphology assessment approach could distinguish the effects of different 
mitochondrial complex inhibitors on cells, we treated iPS-cortical neurons with rotenone, antimycin, and 
oligomycin to inhibit complexes I, III, and ATP synthase activity, respectively. Dimethyl sulfoxide (DMSO) 
was used as a vehicle for these drug treatments, and thus DMSO-treated cells served as controls. Figure 2A 
shows representative images of neurons treated with the highest concentration of each inhibitor, labelled 
with Tetramethylrhodamine, methyl ester (TMRM) to identify mitochondria, calcein to identify viable cells, 
and Hoechst to identify nuclei. TMRM accumulates in healthy mitochondria with an intact mitochondrial 
membrane potential, which is critical for ATP synthesis. For visual inspection of mitochondrial morphology 
at high resolution, we captured high-magnification images at 60x (Supplementary Fig.  3). In all inhibitor 
treatment conditions (Supplementary Fig. 3B-D), mitochondria appeared more fragmented and less elongated 
compared to the control. The differences between inhibitor effects were visually not striking, but Rotenone and 
Antimycin treatments (Supplementary Fig. 3C, D) showed a trend towards a more pronounced reduction in 
TMRM intensity compared to Oligomycin (Supplementary Fig. 3B). To objectively compare the inhibitor effects, 
we performed quantitative analysis. For quantitative high throughput imaging and analysis, the experiments 
were performed using a 20x objective. Using these cell images, we extracted morphological features related 
to mitochondrial size, shape, texture, and spatial distribution for each single cell15. In total, we extracted 50 
morphological features from 55,577 single cells, resulting in 2,778,850 feature values for analysis. We then 
applied hierarchical clustering analysis to group cells based on their morphological features and visualise these 
groupings using a heatmap. Hierarchical clustering works by progressively grouping cells based on the similarity 
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of their morphological features, creating a tree-like structure where cells that share similar characteristics are 
grouped together at different levels of the hierarchy.

Figure 2B shows a heatmap of hierarchical clustering analysis. In the heatmap, each row represents a group of 
cells (such as those treated with different inhibitors), and each column represents an aggregated mitochondrial 
morphological feature (for example mitochondrial area in a group of cells). Each square reflects the relative value 
of a specific feature for a given group of cells (for example antimycin treated cells) compared to all groups of cells. 
Cell groups with higher feature values are represented by more intense colours (red), while lower feature values 
are shown with less intense colours (blue). This color-coding allows for easy visualization of patterns in the 

Fig. 1.  Impact of mitochondrial complex inhibitors on cellular respiration and mitochondrial function. (A) 
Diagram of the mitochondrial oxidative phosphorylation related protein complexes and its connection to 
ATP synthesis. Mitochondrial membrane potential is maintained by the transfer of electrons through protein 
complexes I, III and IV in the inner mitochondrial membrane. As the electrons are transferred, protons are 
pumped across the inner membrane from the mitochondrial matrix into the intermembrane space, creating 
a proton gradient. The gradient created by this proton outflow subsequently brings protons back into the 
mitochondrial matrix via ATP synthase to generate ATP by phosphorylating ADP. (B) Mitochondrial 
respiration was measured by evaluating the extra cellular oxygen consumption. For this well-based time-series 
assay, 10,000 cells were seeded per well of a 96 well plate, and three experimental replicates were performed per 
condition. Cells with reduced mitochondrial respiration exhibit a relatively lower rate of oxygen consumption. 
Data presented as mean ± SD.
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data, showing how different groups of cells respond to mitochondrial inhibitors in terms of their mitochondrial 
morphology.

The hierarchical clustering dendrogram in Fig.  2B shows how cells treated with different mitochondrial 
complex inhibitors are grouped based on their morphological feature similarity. Clusters 1–1 and 1–2 (annotated 
in green and blue) represent cells treated with rotenone and antimycin, respectively. Both inhibitors target 
distinct components of the electron transport chain - complex I for rotenone and complex III for antimycin—
but their effects converge on the disruption of electron flow, which is crucial for maintaining mitochondrial 
membrane potential. As a result, the cells treated with these inhibitors share similar changes in mitochondrial 

Fig. 2.  Group-level cell hierarchical clustering analysis reveals distinct responses to mitochondrial complex 
inhibitions. (A) Representative fluorescent images of neuronal cells treated with Control (0.25% DMSO), 
2.5 µM Rotenone, 2.5 µM Antimycin, and 2.5 µM Oligomycin. Cells were stained with Calcein (green), 
TMRM (orange), and DAPI (blue) to visualize the mitochondria, mitochondrial membrane potential, and 
nuclei, respectively. The upper panel shows Calcein staining, while the lower panel shows TMRM staining to 
highlight differences in mitochondrial membrane potential among the treated groups. (B) Heatmap showing 
hierarchical clustering of cells based on mitochondrial morphological and functional features after treatment 
with mitochondrial complex inhibitors. The clustering separates treatment groups based on the most-affected 
mitochondrial features. The coloured bar on the right represents different clusters (green, blue, yellow, grey), 
correlating with distinct cellular responses to mitochondrial complex inhibition. Sample numbers for each 
treatment group: DMSO (n = 6072), Antimycin 0.625µM (n = 5927), Antimycin 1.25µM (n = 5247), Antimycin 
2.5µM (n = 4748), Rotenone 0.625µM (n = 6908), Rotenone 1.25µM (n = 5174), Rotenone 2.5µM (n = 5802), 
Oligomycin 0.625µM (n = 6395), Oligomycin 1.25µM (n = 5860), and Oligomycin 2.5µM (n = 5444).
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morphological characteristics, indicating a common underlying response to the inhibition of electron transport, 
which leads to their grouping in neighbouring clusters. In contrast, clusters 2 − 1 and 2–2 (light yellow and 
yellow) represent cells treated with oligomycin, which targets ATP synthase. These cells grouped separately due 
to their distinct morphological response. Oligomycin directly inhibits proton flow into the mitochondrial matrix 
and it affects ATP production via a different mechanism than rotenone and antimycin. This functional difference 
is reflected in the mitochondrial morphology of these cells, leading them to cluster separately from those treated 
with electron transport chain inhibitors.

Additionally, within each cluster, cells treated with different doses of the same inhibitor tend to group 
closely together. For example, cells treated with varying concentrations of oligomycin (clusters 2 − 1 and 2–2) 
form sub-clusters within the larger group. This pattern suggests that while the dose of the inhibitor influences 
mitochondrial morphology, the overall response to the drug remains consistent across concentrations. The 
hierarchical clustering method effectively captures these subtle dose-dependent variations, demonstrating that 
the mitochondrial morphological changes induced by different doses of the same drug are related but can still be 
differentiated, reflecting the drug’s concentration-dependent impact on mitochondrial function.

Identification and differential expression of single cells to mitochondrial complex Inhibition
Single cell-based data analysis is highly valuable for understanding the heterogeneity of cell populations, which 
can often be overlooked when analysing aggregated group or well-based values16. We analysed single-cell data to 
identify and visualize the most affected cells by specific mitochondrial complex inhibitions, such as antimycin, 
by observing distinct clustering patterns compared to controls and other treatments. This approach not only 
allows for statistical analysis but also enables the visual inspection of the cellular changes induced by each 
treatment. Additionally, the most affected cells can be used to enhance machine learning-based training and 
modelling strategies.

We further analysed the same dataset used for group-based hierarchical clustering which had 2,778,850 
morphological feature values. Analysing such large single-cell datasets requires the adaptation of advanced data 
analysis approaches, such as dimension reduction techniques, which simplify and enhance the interpretation 
of complex data and aid in visualization17. PCA reduces the dimensionality of the data by transforming the 
original variables into a smaller set of uncorrelated components called principal components (PC). These 
principal components are linear combinations of the original variables, and they are arranged in such a way 
that the first few components capture the maximum variance present in the data. As shown in Fig.  3A, the 
top 10 PCs explained the majority of the variance in our data. Figure 3B presents the composite PCA scores 
(based on the top 10 PCs) for cells treated with different mitochondrial inhibitors (Antimycin, Rotenone, and 
Oligomycin) across three concentrations (0.625 µM, 1.25 µM, and 2.5 µM). The aggregated PCA scores show 
clear distinctions between control (DMSO) and inhibitor-treated cells, reflecting the unique effects of each 
inhibitor on mitochondrial morphology. These effects are dose-dependent, with higher concentrations (2.5 µM) 
leading to greater shifts in the composite PCA scores.

To further explore and visualise the complex relationships identified by PCA, we applied UMAP, a powerful 
dimensionality reduction technique particularly effective for visualizing high-dimensional data in two-
dimensional space. This approach allowed us to plot the distribution of single cells based on the top 10 principal 
components. UMAP results are visualized in scatter plots, where similar data points are positioned close to 
each other. To gain an overall understanding of the response patterns for each inhibitor, we first examined 
the aggregated UMAP scores (Fig. 3C). These aggregated scores provide a summary of the collective cellular 
response to each treatment. To explore the underlying cellular heterogeneity that contributes to these aggregated 
patterns, we then plotted and analysed the single-cell data. The UMAP distribution of control single cells 
(DMSO, Fig. 3D) and single cells treated with antimycin (Fig. 3E), rotenone (Fig. 3F), and oligomycin (Fig. 3G) 
revealed distinct clusters corresponding to varying levels of cellular sensitivity to these treatments. Specifically, 
the analysis identified both the most affected and less affected cell populations within each treatment group. 
The most affected cell populations were clearly visualized in the density plots (Fig. 3H-K), which highlighted 
dense clustering (red) in specific regions of the UMAP space, indicating a strong and uniform response to 
each inhibitor. In contrast, the less affected populations were more dispersed, as depicted by less dense regions 
(yellow and green) in the density plots, suggesting a weaker or more heterogeneous response. Figure 3L-O shows 
representative images of cells belonging to the most affected cell populations after treatment with mitochondrial 
inhibitors. These images highlight the distinct morphological alterations observed in the highly impacted cells, 
including changes in mitochondrial structure, distribution and intensity. The visual representation confirms the 
significant cellular changes captured in the PCA and UMAP analyses, particularly for cells exposed to higher 
concentrations of antimycin, rotenone, and oligomycin.

We further focused our analysis on the single cells that were most affected by a specific inhibitor treatment 
rather than analysing all single cells to better understand the severity of the inhibitor treatments. Calculation 
of the median effect size, a measure that quantifies the magnitude of difference between groups, showed that 
the ATP synthase-inhibited cell group was relatively less affected compared to complex I and III inhibited cell 
groups (median effect size: 2.5µM rotenone: 0.14; 2.5µM antimycin: 0.08; 2.5µM oligomycin: 0.04). To determine 
the specific mitochondrial morphological features that were most affected by each inhibitor, we conducted a 
differential expression analysis. As shown in Fig. 3P-R, antimycin and rotenone resulted in greater disruptions 
in neurite-related features, such as mito_SER_spot_neurite and mito_intensity_neurite, with log P-values of 
250 for antimycin and 225 for rotenone. In contrast, cell body -related features like mito_intensity_cellbody 
and mito_SER_edge_cellbody were less impacted, with log P-values below 150. Oligomycin showed a more 
moderate effect on both neurite and cell body features, with all log P-values remaining below 150.
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Enhanced prediction of mitochondrial Inhibition outcomes by targeting the most affected 
single cells
To determine if our single-cell analysis approach, which focuses on identifying the most affected cells by 
mitochondrial inhibitors, could enhance prediction accuracy, we compared machine learning-based predictions 
using data from all cells versus only the most affected cells for each inhibitor (2.5 µM rotenone, 2.5 µM antimycin, 
and 2.5 µM oligomycin). Overall, by targeting only the most affected single cells, prediction accuracy improved 
for each inhibitor: from 62.75 to 81.97% for antimycin, from 71.86 to 75.12% for rotenone, and from 86.72 to 
94.42% for oligomycin (Fig. 4A, B). Furthermore, this approach reduced the misclassification of antimycin as 
rotenone decreased from 31.2 to 16.36%, which directly contributed to the marked improvement in antimycin 
prediction accuracy. These results highlight the importance of focusing on cellular heterogeneity and utilising 
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Fig. 3.  Identification and differential expression of a sub-population of most affected single cells in response 
to mitochondrial complex inhibition. (A) PCA scree plot illustrating the variance captured by each principal 
component in the dataset, indicating dimensionality reduction. (B) Composite PCA scores (based on the 
top 10 PCs) for cells treated with different mitochondrial inhibitors (Antimycin, Rotenone, and Oligomycin) 
across three concentrations (0.625 µM, 1.25 µM, and 2.5 µM). (C) UMAP visualization of aggregated scores, 
displaying separation of cell populations based on treatment conditions: DMSO, Antimycin, Rotenone, and 
Oligomycin at different concentrations (0.625 µM, 1.25 µM, and 2.5 µM). (D–G) UMAP plots showing the 
comparison between DMSO-treated control cells (D) and cells treated with Antimycin (E), Rotenone (F), and 
Oligomycin (G) at varying concentrations. (H–K) Heatmaps depicting the density of high-responsive cells 
across different treatments: control cells (DMSO) (H), Antimycin-treated cells (I), Rotenone-treated cells (J), 
and Oligomycin-treated cells (K). The heatmaps highlight regions of high cellular response (red region). (L–O) 
Fluorescence images of DMSO high-responsive cells (L), Antimycin high-responsive cells (M), Rotenone high-
responsive cells (N), and Oligomycin high-responsive cells (O). Cells are stained with Calcein (green), TMRM 
(orange), and Hoechst (blue) to highlight mitochondria, mitochondrial membrane potential, and nuclei, 
respectively. (P–R) Differential expression of morphological features compared to controls for Antimycin (P), 
Rotenone (Q), and Oligomycin (R) treatments. Bar plots represent the top morphological features contributing 
to the cellular response under each treatment condition.

◂

Fig. 4.  Improved prediction of mitochondrial inhibition outcomes using a sub-population of the most affected 
single cells. (A) Confusion matrix showing the prediction accuracy of mitochondrial complex inhibition 
outcomes (Rotenone, Antimycin, and Oligomycin) based on all single cells. The matrix indicates classification 
performance with true labels on the y-axis and predicted labels on the x-axis. (B) Confusion matrix showing 
the improved prediction accuracy of mitochondrial inhibition outcomes using a sub-population of the most 
affected single cells. The classification performance is notably enhanced compared to predictions based on all 
single cells.
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the most responsive cells to achieve more accurate predictions of mitochondrial dysfunction outcomes induced 
by complex I, III, and ATP synthase inhibition.

Discussion
In this study, we treated iPS-neurons with three modulators of mitochondrial oxidative phosphorylation: 
rotenone (complex I inhibitor), antimycin (complex III inhibitor), and oligomycin (ATP synthase inhibitor). 
The functional assay measuring mitochondrial respiration showed that all three inhibitors consistently reduced 
respiration, as expected given their roles in ATP synthesis, but it did not differentiate the specific effects of 
each inhibitor at the concentrations tested here. Our high throughput imaging and data analysis approach 
distinguished the effects of each mitochondrial inhibitor. We took a stepwise approach to analyse mitochondria 
at both the group and single-cell levels. Hierarchical clustering analysis of cells treated with different complex 
inhibitors, i.e., complex I, III and ATP synthase, clustered all cell groups differently from each other and from 
control cells, showing the capability of our analysis approach in detecting cells with different mitochondrial 
dysfunctions. Extended analysis of single cell-based data helped us to appreciate cellular heterogeneity and 
identify the proportion of cells predominantly affected by each mitochondrial complex inhibitor based on a 
collective set of morphological features. Identification of the most affected cells had two major applications: (1) 
identification of the morphological features specifically affected by each mitochondrial inhibitor and (2) enhanced 
prediction accuracy of single cells with mitochondrial dysfunction. Differential expression analysis showed that 
consistent with their mode of action, complex I and III inhibitors, which disrupt the electron transport chain, 
exhibited a similar pattern of morphological feature alterations, though with varying degrees of severity. In 
contrast, ATP synthase inhibition resulted in more subtle and distinct effects, characterized by relatively smaller 
changes in membrane potential, thus highlighting the distinct effects of mitochondrial inhibitors based on their 
mode of action. To further validate the utility of the morphological features identified in our analysis, we applied 
machine-learning techniques to predict mitochondrial inhibition outcomes. Initially, predictions based on all 
cells yielded accuracies of 62.75% for antimycin, 71.86% for rotenone, and 86.72% for oligomycin. However, by 
focusing specifically on the most affected cells, as identified through the single-cell analysis, prediction accuracy 
improved to 81.97% for antimycin, 75.12% for rotenone, and 94.42% for oligomycin. Second, and perhaps 
more importantly, this approach reduced the misclassification of closely related inhibitors, such as antimycin 
and rotenone, which both target the electron transport chain. The misclassification of antimycin as rotenone 
decreased from 31.2 to 16.36%, which directly contributed to the marked improvement in antimycin prediction 
accuracy. This finding underscores the utility of our approach in resolving phenotypic overlaps that arise from 
shared pathways, such as the electron transport chain. This marked improvement in the prediction accuracy 
highlights the importance of targeting the sub-population consisting of most affected cells, underscoring the 
value of our approach in enhancing the precision of modelling mitochondrial dysfunction. This method has the 
potential to significantly improve the evaluation of mitochondrial modulators and therapeutic interventions.

The effects of the mitochondrial complex inhibitors here concur with previous studies. HepG2 cells were 
treated with 12 doses of rotenone (complex I inhibitor), antimycin (complex III inhibitor), and oligomycin 
(ATP synthase inhibitor) ranging from 0.0001 to 50µM18. Assessment of ATP content, membrane potential 
and mitochondrial morphology over 24 h using high throughput imaging microscopy showed that all inhibitor 
treatments, particularly at doses above 0.01µM, reduced cellular ATP content. However, the treatments 
had distinct effects on mitochondrial membrane potential and morphology. Complex I and III inhibition 
significantly reduced membrane potential, while ATP synthase inhibition did not affect or mildly increased 
membrane potential. Evaluation of mitochondrial size to understand mitochondrial fission showed that ATP 
synthase inhibition but not complex I and III inhibitions increased mitochondrial fission18. Similar to our 
findings, while all mitochondrial complex inhibitors reduced ATP, they had distinct effects on mitochondrial 
membrane potential and morphology, highlighting the possibility of using mitochondrial membrane potential 
and morphology measures to classify inhibitor effects based on their modes of action. Similarly, in iPS-derived 
neurons, inhibition of complex I and not ATP synthase reduced membrane potential19. In addition to the primary 
effects of complex inhibition on mitochondrial ATP synthesis, secondary effects of mitochondrial dysfunction, 
such as reactive oxygen species production, can also contribute to the observed changes in mitochondrial 
morphology20.

Mitochondria are dynamic organelles that change size and shape to perform various cellular functions4,7. 
The correlation between mitochondrial morphology - shape, structure, network, and spatial distribution—and 
function is well-established and referred to as ‘morphofunction’9,21. This relationship is bidirectional and linked 
to multiple mitochondrial roles22,23. Mitochondrial morphology is modulated by processes such as fusion, 
fission, motility, and interactions with other organelles4,5. Under stress, such as exposure to mitochondrial 
toxins, mitochondrial fusion helps balance ATP production by combining damaged mitochondria with healthy 
ones, while fission isolates and removes dysfunctional parts for degradation through mitophagy. These processes 
ensure energy production and quality control, maintaining cellular homeostasis. An imbalance in the fusion: 
fission ratio is commonly observed in neurodegenerative disease patient-derived cells24. Along with these 
processes, mitochondrial dynamics and morphology are determined by mitochondrial cristae structure governed 
by its protein and lipid composition. The folding and topology of the inner membrane, where electron transport 
chain complexes and ATP synthase dimers reside, are crucial for bioenergetics25 where cristae remodelling 
enhances energy production26,27. Downregulation of phosphatidylethanolamine, a phospholipid critical to 
maintaining mitochondrial membrane structure in CHO-K1 cells, induced formation of more rounded cristae, 
reduced complexes I and IV activity, impaired super complex formation, reduced ATP synthesis, higher mean 
mitochondrial circularity, and increased mitochondrial fragmentation28. Mitochondrial matrix configuration is 
also dynamic, governed by membrane potential, with complex I inhibition simultaneously decreasing membrane 
potential and increasing matrix condensation29.
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Given the complex and highly dynamic nature of mitochondria, we utilized a high throughput imaging and 
analysis approach that allows extraction of a large number of morphological features - including parameters 
such as shape, size, texture, and spatial distribution. These features enabled us to perform a comprehensive 
mitochondrial morphological analysis and capturing subtle changes in mitochondrial structures. These 
extensive features provided a rich dataset of 2,778,850 feature values from 55,577 single cells for an unbiased, 
high-resolution analysis of mitochondrial alterations induced by different complex inhibitors. First, by applying 
hierarchical clustering analysis, we were able to distinguish cells at a group-level based on their morphological 
responses to the mitochondrial inhibitors - rotenone, antimycin, and oligomycin. This method allowed us to 
cluster cells treated with each inhibitor distinctly from one another and from control cells, showcasing the 
application of multiparametric analysis in detecting diverse patterns of mitochondrial dysfunction that are often 
obscured in traditional bulk measurements, such as the mitochondrial respiration assay shown in result Sect. 1. 
Multi-parametric analysis approaches have been successfully applied in the recent past to better understand 
mitochondrial biology. Using live cell imaging, Westrate et al., were able to predict mitochondrial fusion and 
fission events by evaluating their morphological features. Mitochondrial perimeter correlated positively with 
fission and mitochondrial solidarity with fusion30. Charrasse et al.. analysed the effects of a range of pesticides on 
lung epithelial cells using 104 parameters, including 24 mitochondrial features and 26 features of mitochondrial 
clusters (shape, intensity and spatial descriptors)31. By analysing these features in combination using unsupervised 
PCA and supervised linear discriminant analysis machine-learning approaches, the authors identified a specific 
mitochondria morphological signature for each individual pesticide. Morphological assessment of other cellular 
components such as the nucleus did not identify any significant alterations at moderate doses indicating the 
specificity of mitochondrial inhibition effect on mitochondrial morphology32. Similarly, our analysis did not 
affect nucleus morphology.

Group-level cell analysis helps identify overall trends and morphological patterns across cell populations, 
as seen here, but fails to provide information on subtle changes of individual features, cumulative effects of 
these subtle changes or heterogeneous responses. While it helps in classifying large groups of cells based on 
similar responses, it misses the finer details of cell-to-cell variability. This is relevant to neurodegenerative 
disease pathology assessment. A genetic mouse model of Parkinson’s disease with mitochondrial dysfunction 
selectively in dopaminergic neurons demonstrated that mitochondrial morphology defects preceded both 
neuronal impairment and motor deficits. These early mitochondrial abnormalities also responded to treatment, 
highlighting their potential as early indicators of disease progression and therapeutic efficacy33. To assess 
mitochondrial morphology, mitochondria were classified into four distinct types based on their morphology: 
type I mitochondria - healthy mitochondria, type II mitochondria - moderately affected mitochondria, type 
III mitochondria - severely affected mitochondria and type IV mitochondria - dysfunctional mitochondria 
exhibited disrupted outer membrane, deficiency in cristae, absence of the internal membrane structures33. In 
this study, mitochondrial morphology was assessed across different disease stages - early, middle, and late, in 
both mutant and wild-type mice, with or without PT320 treatment a sustained release formulation of the GLP-
1R agonist Exenatide, a therapeutic agent aimed at mitigating mitochondrial dysfunction. In wild-type mouse, 
at all disease stages, the population of type I mitochondria was consistently present at ~ 80% and had ~ 20% of 
all other mitochondrial types i.e., types II, III and IV. The % of type I mitochondria was significantly lower in 
the mutant mouse in the early disease stage at ~ 30% and this further reduced to 20% and 15% in the middle 
and late disease stages respectively. The rest of the mitochondria belonged to types II, III and IV with type IV 
being about 50% of all mitochondria in the late stages. The presence of PT320 demonstrates a protective effect 
on mitochondrial morphology in the early and middle disease stages, where the % of type I mitochondria was 
comparable to wild-type mice33. Such understanding of mitochondrial dysfunction and drug treatment effects 
arising from measuring single mitochondrion which will be reflective in single-cell analysis can be missed or 
discounted with group-based analysis.

Along with group-level cell analysis, we analysed single-cell data using dimensionality reduction techniques 
- PCA and UMAP to understand the cellular heterogeneity of mitochondrial dysfunction. Dimensionality 
reduction simplified the complex, high-dimensional dataset, while still retaining the most important variance, 
helping to reveal the subtle differences between individual cells. Through this method, we were able to efficiently 
visualize clusters of single cells based on their unique morphological profiles, revealing subpopulations of cells 
that were more severely affected by the mitochondrial inhibitors. In contrast to group-level analysis, which 
averages responses across entire cell populations, single-cell analysis allowed us to capture the variability 
within individual cells and identify those cells most responsive to the inhibitors. This was especially important 
for understanding how mitochondrial dysfunction presents heterogeneously, often affecting a smaller sub-
population of cells more dramatically than others within the same population. By focusing on these most 
affected cells, we could uncover distinct morphological features that were uniquely altered by each inhibitor, 
offering deeper insights into their mechanisms of action.

To refine these findings further, we employed differential expression analysis at the single-cell level, which 
allowed us to identify the specific morphological features that were significantly altered by each inhibitor. For 
both rotenone and antimycin, the single-cell analysis showed that neurites were more severely impacted than the 
cell body, with features such as mito_SER_spot_neurite and mito_intensity_neurite being significantly affected. 
This indicates that neurites, which have higher energy demands, are particularly vulnerable to disruptions 
in mitochondrial function. In contrast, cell bodies showed fewer alterations, suggesting that mitochondrial 
dysfunction in neurites may be an early marker of mitochondrial stress before the cell body is compromised. 
This neurite vs. cell body distinction is a unique advantage of single-cell analysis, as group-level approaches 
would have averaged these effects across the entire cell population, missing these important region-specific 
vulnerabilities. In contrast, oligomycin (ATP synthase inhibitor) exhibited a distinct profile, where the neurites 
were again predominantly affected, particularly in terms of fission and membrane potential, indicating that 
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ATP production in the neurites is crucial for maintaining their health. The ability to discern compartmentalized 
mitochondrial dysfunction - such as in the neurites versus the cell body—was made possible only through 
single-cell resolution. This capability demonstrates the advantage of single-cell analysis in detecting subtle, 
compartment-specific mitochondrial responses, which is crucial in diseases where neuronal dysfunction is 
driven by localized mitochondrial impairments. However, it is important to note the limitations of our study. 
While we focused on mitochondrial morphology in this work, interactions between mitochondria and other 
sub-cellular components, such as lysosomes, were not assessed. These organelle-organelle interactions are known 
to influence mitochondrial function and could provide additional insights into the mechanisms of dysfunction. 
Future studies involving the assessment of multiple organelles together are warranted.

Finally, the predictive power of our approach was enhanced by narrowing the analysis to the most affected 
cells. By focusing the machine learning models on these cells, rather than using data from all cells, we were 
able to increase the prediction accuracy of mitochondrial dysfunction outcomes. This improvement in accuracy 
highlights the importance of focusing on the most responsive subpopulations rather than averaging over all cells, 
as bulk analyses would have obscured these critical cellular responses. The ability to target the most affected cells 
provides a more accurate understanding of mitochondrial health and dysfunction, making it a valuable tool 
for both drug evaluation and the future development of therapeutic interventions in diseases associated with 
mitochondrial dysfunction. Our approach of identifying a sub-population of most affected cells is novel and not 
shown in previous studies involving iPS-neurons34.

In conclusion, in this study, single-cell analysis of mitochondria provided a high-resolution view of cellular 
heterogeneity in response to mitochondrial inhibitors, revealing subpopulations of cells most affected by each 
treatment. By focusing on these most responsive cells, helped us identify distinct morphological features that 
were specifically altered by an inhibitor, leading to more accurate predictions of mitochondrial dysfunction 
outcomes. This approach highlights the value of targeting specific subpopulations for a precise understanding 
of mitochondrial health and drug efficacy, offering a potential tool for evaluating therapeutic interventions in 
neurodegenerative diseases associated with mitochondrial dysfunction.

Methods
Ethics This study involving human cells was reviewed and approved by the Human Research Ethics Committee at 
University of New South Wales, Australia (reference number: iRECS4567). Research involving the generation of 
iPS stem cells was approved by the Gene technology office at University of New South Wales, Australia (reference 
number: NLRD-GTRC-2023-0652). All experiments were carried out in accordance with relevant guidelines 
and regulations.

Reprogramming of human peripheral blood mononuclear cells (PBMCs) to iPS cells
iPS cells were generated by reprogramming commercially purchased PBMCs (07930, Stem cell technologies) 
as described by us previously1. Briefly, PBMCs were genetically reprogrammed using commercially available 
CytoTune-iPS Sendai reprogramming kit vectors KLF 4, c-MYC, SOX 2 and OCT 3/4. iPS cells were stored in a 
cryotank until required for the neuron differentiation experiments.

Differentiation of iPS to mature cortical neurons and charecterisation
iPS cells were differentiated into cortical neurons using the dual SMAD induction and FGF2 expansion protocol 
for 30 days using previously published protocols1,35. To characterise the mature neurons generated, we tested 
the presence of mature cortical neuron markers TBR1 and CTIP2 36,37 by immunostaining using our previously 
published protocol1. Briefly, the cells were fixed, permeabilised and immunostained using the BD Cytofix/
Cytoperm™ Fixation/Permeabilization Kit (Cat#554714, BD Biosciences). Primary (TBR1, ab183032, Abcam and 
CTIP2 ab18465, Abcam) and secondary antibody incubations were performed for 1 h and 30 min respectively. 
90% of cells expressed beta III tubulin, a marker for neurons, 32% of the cells expressed TBR1, a mature cortical 
layer VI marker and 28% of the cells expressed CTIP2, a mature cortical layer V marker (Supplementary Fig. 1) 
confirming their mature cortical neuron identity.

Mitochondrial inhibitor treatment
Rotenone (Cat# R8875, Sigma), antimycin A (Cat# A8674, Sigma) and oligomycin A (Cat# 75351, Sigma) were 
used to inhibit electron transport chain complexes I and III and ATP synthase, respectively. Three different 
doses were used for each inhibitor: 0.625µM, 1.25µM and 2.5µM. All the inhibitors were prepared in dimethyl 
sulfoxide (DMSO) (102952, Sigma). The untreated cells were cultured in 0.25% DMSO, the highest DMSO 
concentration used to prepare the inhibitors, to account for any cellular effects arising by DMSO exposure. All 
inhibitor treatments were performed for 16 h.

Live cell mitochondria morphology assay
After 16  h of drug media containing drugs was removed and replaced with a PBS+/+ staining solution for 
various cells components (Calcein AM, C3100MP, 1:2000; Hoechst, 33342, 1:10,000 and TMRM, T-668, 25nM, 
all Thermofisher scientific products) and incubated for 30 min at 37°C. Staining solution was then replaced 
with PBS+/+ and imaged with Operetta at 20x magnification. Calcein AM is used to label and identify viable 
cells. Calcein AM is non-fluorescent and can cross the cell membrane due to its lipophilic nature. The presence 
of cytosolic unspecific esterase cleaves down the acetomethoxy group (AM) to form Calcein that become 
fluorescent. By its nature, this hydrophilic alcohol is not permeable to membranes and, consequently, the 
molecule is retained in the cell cytosol. When excited, calcein exhibits green fluorescence. Hoechst is used to 
label and identify nuclei. Hoechst is composed of multiple molecules that can diffuse through membrane due to 
its small size and positive charge, Hoechst, a non-intercalating molecule, binds to the minor groove of double-

Scientific Reports |        (2025) 15:16715 10| https://doi.org/10.1038/s41598-025-99972-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


stranded DNA, with a preference for A-T rich regions. Upon DNA binding, the suppression of rotational and 
reduction of hydration of the molecule diminish energy dissipation, increasing pre-existing blue fluorescence 
by 30. When excited, Hoechst exhibits blue fluorescence38. TMRM accumulates in mitochondria with high 
mitochondrial membrane potential and hence commonly used as an indicator for healthy mitochondria. It is 
a non-polar, fluorescent molecule that can easily diffuse inside the cell. It is positively charged and naturally 
attracted to the strong negatively charged mitochondrial matrix. As the dye accumulates inside mitochondria, 
a more intense fluorescence signal comes from healthy mitochondria compared to the background and the 
unhealthy mitochondria.

High-magnification images were acquired using the Revvity PhenixPlus confocal mode at 60x magnification. 
Z-stacks were captured with 0.5-micron steps. These images are presented in Supplementary Fig. 3.

Morphological feature extraction
The morphological features defined were extracted from cell images using the Harmony High-Content Imaging 
and Analysis Software (version 4.9, Revvity). The cell nucleus and the cells were identified based on Hoechst 
and calcein staining and using the “Find Nuclei” and “Find Cytoplasm” functions. Morphological features were 
extracted using the “Calculate Intensity Properties”, “Calculate Morphology Properties” and “Calculate Texture 
Properties” functions. The morphology and texture features were extracted as described before15. Mitochondrial 
size and texture related features were extracted for different cell regions i.e., the cell body and neurites.

Developed in collaboration with specialists from Revvity, Inc (manufactures of the imaging and analysis 
platform used here), we leveraged our combined expertise in cellular morphomics and mitochondrial 
biology1,15to provide a comprehensive description of the morphological features extracted and their potential 
relevance to mitochondrial morphology and function.

Texture features
The texture features are based on the patterns and variations in pixel intensities across a cell image. Here, we use 
a set of eight texture filtered images quantifying the presence of different characteristic intensity patterns. The 
size of the pattern (“scale”) corresponds to the size of the intensity features of interest (mitochondria or parts of 
it). These features are particularly helpful to access and indicate the complex mitochondrial structure. Some of 
those features are directly correlated to visible biological features (e.g., elongated mitochondria or vacuolated 
regions), while others are useful in combination in statistical analysis, helping to uncover less visible but 
biologically relevant patterns. Table 1 below provides a detailed description of the texture features in relevance 
to mitochondria and also the cell spatial organisation and distribution of mitochondria.

Extracellular oxygen consumption (OCR) assay
The OCR assay is a well-accepted measure of mitochondrial respiration. It measures cell oxygen use with a real-
time kinetic analysis using a fluorescence probe. The assay kit (ab197243) comprises of an oxygen quenching 
fluorescent dye that is added to cell culture media. In cells with healthy mitochondria, high respiration rates lead 
to significant oxygen consumption, reducing local oxygen concentration. This results in a higher fluorescence 
intensity from the oxygen-sensitive probe. Vice versa for dysfunctional mitochondria. The experiments 
were performed following the manufacturer’s instructions and according to published methods39.The probe 
fluorescence was measured using fluorescence plate kinetic reader for 2  h at 37ºC. The rate of change in 
fluorescence intensity was calculated, providing a measure of the oxygen consumption rate, indicating the 
mitochondrial respiration.

Hierarchical clustering for group-level cell analysis
This analysis was performed using RStudio R packages Spectre for data processing and clustering, and pheatmap 
for visualizing the results. Data Pre-processing and Normalization: The raw data were imported from a CSV file 
containing cellular features from multiple experimental conditions. The dataset included columns representing 
various morphological measurements across different treatment groups. Batch correction was applied using 
the ComBat function from the Surrogate Variable Analysis (sva) package, which corrects for non-biological 
variation across different experimental batches while preserving the biological differences between groups. 
After batch correction, the mean of each morphological feature was calculated within each treatment group. 
These features were then z-score normalized to ensure comparability across different scales. Missing values were 
replaced with 0. Hierarchical Clustering: Hierarchical clustering was performed on the z-score normalized data 
using Euclidean distance and Ward’s method for linkage. The clustering was conducted in two stages: first, we 
performed hierarchical clustering to identify three main clusters. These clusters were further subdivided by 
applying hierarchical clustering within each main cluster to generate two sub-clusters, creating a total of six 
final clusters. The main and sub-cluster assignments were then combined to form unique cluster labels (e.g., 
1–1, 1–2, etc.). The distance matrix for clustering was computed from the scaled feature data, and clustering 
was performed using the hclust function in R. To assign data points to clusters, the cutree function was used, 
specifying the desired number of main and sub-clusters. The results were stored in the dataset as new columns 
representing both main and sub-cluster assignments. Heatmap Generation: Heatmaps were generated to visualize 
the clustered data. The columns corresponding to the z-score normalized features were used for this purpose. 
Annotations based on the cluster assignments were added to each heatmap to facilitate the interpretation of 
the results. Custom colors were applied to the clusters to visually distinguish between them. Specifically, the 
following color scheme was used: 1–1 = green, 1–2 = blue, 2−1 = light yellow, 2–2 = yellow, 3−1 = grey. Heatmaps 
were generated using the pheatmap function, displaying the morphological features and cluster annotations. The 
R script file is available as Supplementary File. 4.
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Single cell-based analysis This analysis was performed using RStudio utilising these R packages were utilized: 
data.table for data handling, Spectre for data processing and clustering, ggplot2 and ggpubr for data visualization, 
umap for dimensionality reduction, and openxlsx for exporting results. Additional packages, such as cluster, 
MASS, and cowplot, were used to enhance clustering and visualization capabilities. Data Pre-processing, 
transformation and normalization: Raw data, containing cellular features from multiple experimental conditions, 
were imported from a CSV file. Batch correction was applied using the ComBat function from the Surrogate 
Variable Analysis (sva) package to correct for potential batch effects across different experimental plates. After 
batch correction, an Arcsinh transformation was applied to the feature columns to compress large values while 
preserving the structure of the data. Following the transformation, z-score normalization was applied to each 
feature, standardizing the values across different scales for comparability. Features with zero variance were 
removed to ensure that only informative variables were used in subsequent analyses. Dimensionality reduction 
- Principal Component Analysis (PCA): PCA was performed on the transformed and normalized data to reduce 
dimensionality and identify key features contributing to variance. Scree plots were generated to illustrate the 
variance explained by each principal component. UMAP Visualization: UMAP was used to visualize the high-
dimensional PCA scores. UMAP was applied to the first 10 principal components to create 2D representations of 
the data, facilitating the identification of patterns across different experimental groups. Aggregated UMAP plots 
were generated by calculating the mean UMAP scores for each group. Additionally, density-based UMAP plots 
were created to visualize the distribution of data points across different experimental conditions. Identifying 
sub-population of cells that are most affected by an inhibitor treatment and differential expression analysis: To 
identifying sub-population of cells that are most affected by an inhibitor treatment, cells around the median for 
each group were selected based on the median absolute deviation (MAD). Groups included in the analysis were 
“DMSO2.5uM”, “AntimycinA2.5uM”, “Oligomycin2.5uM”, and “Rotenone2.5uM”. A non-parametric Wilcoxon 
test was performed to compare each experimental group with the control group (“DMSO2.5uM”) across 
selected features. P-values were adjusted using the Benjamini-Hochberg method, and effect sizes were calculated 
to quantify the differences between groups. Heatmaps were generated to visualize differential expression results 
and effect sizes across the experimental groups. Log-transformed P-values and effect sizes were visualized using 
bar plots. For significant results, log-transformed P-value plots were generated with a white background for 
clarity. Custom color palettes were applied to distinguish between experimental groups in both UMAP and 
heatmap visualizations. The R script file is available as Supplementary File. 5.

Feature Feature description and mitochondrial relevance

Texture 
features

Spot feature Detects pixels where the intensity of the surrounding pixels drops in all directions on the given scale. This is represented by a decrease in intensity (‘-’ 
arrows), which may indicate mitochondrial fragmentation during fission. Supplementary Fig. 2A.

Hole feature Detects small dark regions where dark pixels are surrounded by bright pixels, representing a hole. This feature corresponds to a reduction in intensity 
(‘-’ arrows), indicating regions of lower intensity that could suggest mitochondrial vacuolation or cristae remodelling. Supplementary Fig. 2B.

Ridge feature Detects long, linear structures with clear boundaries based on pixel intensities. These are typically associated with an increase in intensity (‘+’ 
arrows), representing elongated, highly interconnected mitochondria. Supplementary Fig. 2C.

Valley feature Identifies elongated regions with pixels that have significantly lower intensity values compared to their surroundings. This decrease in intensity (‘-’ 
arrows) can be associated with mitochondrial dysfunction or structural damage. Supplementary Fig. 2D.

Saddle feature Detects regions with a combination of high and low intensities, creating a saddle-like intensity profile. This feature shows both increases (‘+’) and 
decreases (‘-‘) in intensity, indicating complex mitochondrial structures, often seen during the fusion-fission transition. Supplementary Fig. 2E.

Edge feature Quantifies the total amount of edges inside the region of interest (e.g., cell bodies or neurites). Higher edge values indicate a more structured 
intensity pattern, while the presence of other texture features (such as ridges or valleys) will also increase the edge value. Supplementary Fig. 2H.

Bright and dark 
features

Quantifies the presence of bright or dark plateaus larger than the given scale. These plateaus are typically characterized by constant intensity 
(‘const’), with bright regions indicating larger smooth areas of high intensity and dark regions representing larger smooth areas of low intensity. 
Supplementary Fig. 2F, G.

STAR 
features

Threshold 
compactness

The “Threshold compactness” based cell assessment indicates if there are bright compact regions in the cell indicative of mitochondrial clustering/
organisation. It does this by, first identifying the top 30–60% of bright pixels based on their intensity and then the compactness of the bright 
pixels in the cell is measured. This assessment indicates if the bright pixels are coming from a single compact area or fragmented into multiple 
smaller irregular regions. Mitochondrial relevance: Under certain physiological and pathological conditions, such as impaired axonal transport, 
mitochondria cannot be effectively transported to distal regions of the cell resulting in mitochondrial accumulation or clustering around the cell 
body where they are generated.
Supplementary Fig. 2I.

Symmetry

The “Symmetry” assessment indicates the symmetry of the mitochondrial intensity distribution within cells. It examines if the fluorescence intensity 
distribution in the cell is symmetrical. There are eight properties reflecting the symmetry of the intensity distribution inside each cell based on the 
intensity of radial decay and circular repetition patterns. Properties are named “Symmetry XY”. X describes the intensity decay in radial directions 
– 0 and 1. 0 indicates how mitochondrial fluorescence intensity is distributed uniformly throughout the cell. 1 indicates how mitochondrial 
fluorescence intensity is distributed from the cell center to the periphery. Y reflects the number of circular repetitions. It indicates that the intensity 
pattern of mitochondria repeats Y number of times around the cell circumference. For example, Symmetry 02: Reflects a basic, bipolar symmetry 
where the mitochondrial intensity distribution pattern has two symmetrical regions. Symmetry 03, 04 and 05 indicate more complex tripolar, 
quadripolar and pentapolar intensity distribution patterns. Like Symmetry, the Radial (Supplementary Fig. 2D) and Profile (Supplementary Fig. 2E) 
assessments measure mitochondrial spatial distribution based on their intensity distribution. Supplementary Fig. 2J.

Radial
The Radial measures are used to analyse the distribution of fluorescence intensity from the center of the cell outward. “Radial Mean” measures 
the average distance of mitochondria from the cell center, weighted by their fluorescence intensity. It indicates how mitochondria are distributed 
relative to the cell center. “Radial Relative Deviation” measures the variation in the radial distribution of mitochondrial intensity. It indicates the 
homogeneity or heterogeneity of mitochondrial distribution around the cell center. Supplementary Fig. 2K.

Profile
Profile parameter analyses intensity distribution in the specific regions of the cell. The two specific profile regions we use are Profile 2/2 measures 
the intensity of mitochondria closer to the cell center or nucleus. Profile 1/2 measures the intensity of mitochondria closer to the cell periphery. 
Comparing the intensity profiles of both regions it can indicate if the mitochondrial distribution is more central or peripheral. Changes in these 
parameters can indicate mitochondrial distribution alterations. Supplementary Fig. 2L.

Table 1.  Description of texture features and cell spatial organisation and distribution features.
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References for all R-packages used for group and single cell level analysis
data.table, ggplot2 40, ggrepel41, rstudioapi42, Spectre43, viridis44, ggpubr45, UMAP46, cluster47, MASS48 and 

cowplot49.

Machine-learning based prediction and 10-fold cross-validation method
Prediction analysis was performed using single-cell values from all cells, as well as after selecting a sub-population 
of cells most affected by inhibitor treatment. A neural network previously described for cell morphological data34 
was used to conduct the experiments. The input was tabular data containing single-cell values, and the outputs 
were classification accuracy scores, presented as percentages. To validate the accuracy, we utilised 10-fold cross-
validation, which split the dataset into 10 random folds while preserving the percentage of samples in each class 
across all folds. Each fold was used as a test set (10% of the data), with the remaining folds (90%) serving as the 
training and validation sets. The model was run and tested on each fold, resulting in 10 evaluated accuracies, 
which were then averaged to calculate the mean accuracy. The R script file is available as Supplementary File. 6.

Data availability
Data is provided within the manuscript or supplementary information files.
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